Combine multiple data tables or data frames using rbindlist in R

Spread the love

Data manipulation is a fundamental step in the data analysis process. In R, there are multiple ways to combine datasets, but one of the most efficient methods is using the rbindlist function from the data.table package. This article aims to provide a comprehensive guide to the application of rbindlist, its nuances, and its advantages over the traditional rbind function.

Basics of rbindlist

The rbindlist function is part of the data.table package, which is designed to provide high-performance and memory-efficient options for data manipulation. rbindlist is a faster, more efficient version of the base R function rbind and is especially useful for combining a list of multiple data frames or data tables.

Basic Syntax and Parameters

The basic syntax of rbindlist is:

rbindlist(l, use.names = TRUE, fill = FALSE, idcol = NULL)
  • l: A list of data frames or data tables.
  • use.names: Whether to match columns by name.
  • fill: Whether to fill missing columns with NAs.
  • idcol: Option to create a new column that identifies data from each original table.

Combining Data Frames

Combining data frames is as simple as passing them inside a list to rbindlist.

df1 <- data.frame(a = 1:2, b = 3:4)
df2 <- data.frame(a = 5:6, b = 7:8)
result <- rbindlist(list(df1, df2))


   a b
1: 1 3
2: 2 4
3: 5 7
4: 6 8

Handling Column Mismatches

By default, rbindlist expects that all data frames have the same column names, in the same order. If this is not the case, you can set fill = TRUE to fill in missing columns with NAs.

df3 <- data.frame(a = 9:10)
result <- rbindlist(list(df1, df3), fill = TRUE)


    a  b
1:  1  3
2:  2  4
3:  9 NA
4: 10 NA

Preserving or Generating Keys

If your data tables have keys (one or more columns used as an index), these can be preserved using the use.names and idcol parameters.

result <- rbindlist(list(df1, df2), use.names = TRUE, idcol = "origin")


   origin a b
1:      1 1 3
2:      1 2 4
3:      2 5 7
4:      2 6 8

Advanced Options

  • use.names = FALSE: This can speed up operations but will result in columns being combined based on their order, not names.

Practical Examples

Example 1: Combining Stock Data

Imagine you have monthly stock data for several companies, each in separate data tables. You could combine them into a single table for more effective time-series analysis.

Example 2: Aggregating Survey Results

If you have survey data divided across multiple tables (perhaps from different years or groups), you can aggregate all the data for trend analysis.

Performance Considerations

The rbindlist function is optimized for performance and can be significantly faster than rbind, especially when dealing with large datasets. Its ability to handle large datasets efficiently is one of its major advantages.

Comparing rbindlist with rbind

  • Speed: rbindlist is faster.
  • Flexibility: rbindlist can handle column mismatches.
  • Memory: rbindlist is more memory-efficient.


  • Column Mismatch: Be cautious about setting fill = TRUE as this can introduce NAs into your dataset.
  • Column Types: Ensure all the data frames/data tables have consistent column types to avoid unexpected behavior.


The rbindlist function offers a fast and efficient way to combine multiple data tables or data frames in R. Its flexibility in handling column mismatches and its performance optimization make it a valuable tool for any data scientist’s toolkit. This guide covered the function’s basic and advanced usage, its performance benefits, and compared it to the traditional rbind method, providing a comprehensive look into this versatile function.

Posted in RTagged

Leave a Reply