Leverage statistics are an essential part of any statistical analysis, particularly when you’re dealing with linear regression models. The leverage measures how far an observation deviates from the mean of the predictor variable, which can have a significant influence on the fit of the model. High-leverage points are those that are far from the mean, and they have the potential to distort your model. Therefore, identifying these points is crucial for robust and reliable statistical modeling.
In this comprehensive guide, we’ll walk through how to calculate leverage statistics in R step-by-step.
1. Overview of Leverage Statistics
Before diving into calculations, it’s important to understand what leverage is. In the context of linear regression, leverage is a measure of how much an individual data point affects the overall model fit. It ranges from 0 to 1, and higher values indicate that a point has a higher influence on the model.
Formula for Leverage in Simple Linear Regression

Formula for Leverage in Multiple Linear Regression

2. Data Preparation
Before calculating leverage, you need to prepare your dataset. Here, we’ll work with the mtcars
dataset that comes pre-loaded in R.
data(mtcars)
3. Simple Linear Regression
Let’s start by fitting a simple linear regression model to predict mpg
based on wt
.
simple_model <- lm(mpg ~ wt, data = mtcars)
4. Multiple Linear Regression
Similarly, we can fit a multiple linear regression model using mpg
, wt
, and hp
.
multiple_model <- lm(mpg ~ wt + hp, data = mtcars)
5. Identifying High Leverage Points
To calculate the leverage statistics, you can use the hatvalues()
function in R.
For Simple Linear Regression:
hatvalues_simple <- hatvalues(simple_model)
For Multiple Linear Regression:
hatvalues_multiple <- hatvalues(multiple_model)
6. Visualizing Leverage Points
Visualization is a powerful way to identify high-leverage points.
plot(hatvalues_simple, main = "Leverage Points in Simple Linear Regression")

7. Remedial Measures
After identifying high-leverage points, the next step is to take remedial measures, which could include:
- Removing the points and re-fitting the model.
- Using robust regression techniques.
8. Conclusion
Leverage statistics are crucial in identifying influential points that can drastically impact your regression model. R provides a robust set of tools for calculating and interpreting these statistics. Understanding and identifying high-leverage points allows you to build more robust models.