
To raise to the power of a column in PySpark, we can use the pow() function. This function can helps us find the square value of a column, the cube of a column , square root and cube root of a column in pyspark.
Syntax –
pow(col, n)
col – Name of the column
n – Raised power
Read a Dataset –
Let’s read a dataset to illustrate it. We will use the clothing store sales data.
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.format('csv') \
.options(header='true', inferSchema='true') \
.load('../data/clothing_store_sales.csv')
df.show(5)

Square of a column in PySpark –
To calculate the square of a column, we will pass the name of the column and 2 as the argument to the pow() function. Let’s take the square of the Age column.
from pyspark.sql.functions import pow, col
df.select("*", pow(col("Age"), 2).alias('Age_Square')).show(5)

Cube of a column in PySpark –
To calculate the cube of a column, we will pass the name of the column and 3 as the argument to the pow() function.
df.select("*", pow(col("Age"), 3).alias('Age_Cube')).show(5)

Square Root of a column in PySpark –
To calculate the square root of a column, we will pass the name of the column and 1/2 as the argument to the pow() function.
df.select("*", pow(col("Age"), 1/2).alias('Age_Square_Root')).show(5)

Cube Root of a Column in PySpark –
To calculate the cube root of a column, we will pass the name of the column and 1/3 as the argument to the pow() function.
df.select("*", pow(col("Age"), 1/3).alias('Age_Cube_Root')).show(5)
