
The sum() method in pandas calculates the sum of the values over the requested axis. This is equivalent to the method numpy.sum
.
Examples –
Let’s create a dataset to work with.
import pandas as pd
data = {'Apple':[89, 89, 90, 110, 125, 84, 131, 123, 123, 140, 145, 145],
'Orange': [46, 46, 50, 65, 63, 48, 110, 120, 60, 42, 47, 62],
'Banana': [26, 30, 30, 25, 38, 22, 22, 36, 20, 27, 23, 34 ],
'Mango': [80, 80, 90, 125, 130, 150, 140, 140, 135, 135, 80, 90]}
index = ['Jan','Feb','Mar','Apr','May','June','Jul','Aug','Sep','Oct','Nov','Dec']
df = pd.DataFrame(data, index=index)
df

1 . Calculate the Sum of the Columns –
You can calculate the sum of a single column like this
df['Apple'].sum()
#output
1394
or you can calculate the sum for all the columns like this
df.sum()
#output
Apple 1394
Orange 759
Banana 333
Mango 1375
dtype: int64
2 . Calculate the Sum of the Rows –
To calculate the sum of each rows, we need to set the axis parameter to axis=1 or columns.
df.sum(axis=1)
#output
Jan 241
Feb 245
Mar 260
Apr 325
May 356
June 304
Jul 403
Aug 419
Sep 338
Oct 344
Nov 295
Dec 331
dtype: int64