
There are various attributes of numpy array, let’s look at them one by one.
1 . Shape –
The shape attribute returns a tuple containing the length of each dimension of the array.
In [1]: import numpy as np
In [2]: # one dimensional array
In [3]: arr1 = np.array([5, 2, 10, 6])
In [4]: arr1
Out[4]: array([ 5, 2, 10, 6])
In [5]: arr1.shape
Out[5]: (4,)
In [6]: # two dimensional array
In [7]: arr2 = np.ones((2, 3))
In [8]: arr2
Out[8]:
array([[1., 1., 1.],
[1., 1., 1.]])
In [9]: arr2.shape
Out[9]: (2, 3)
2. Size –
The size attribute tells you the total number of elements in a numpy array.
In [10]: arr1
Out[10]: array([ 5, 2, 10, 6])
In [11]: arr1.size
Out[11]: 4
In [12]: arr2
Out[12]:
array([[1., 1., 1.],
[1., 1., 1.]])
In [13]: arr2.size
Out[13]: 6
3. Ndim –
The ndim attribute tells you the number of dimensions a numpy array has.
In [14]: arr1.ndim
Out[14]: 1
In [15]: arr2.ndim
Out[15]: 2
4. nbytes –
This tells you the number of bytes that is used to store a numpy array.
In [16]: arr1.nbytes
Out[16]: 16
In [17]: arr2.nbytes
Out[17]: 48
5 . dtype –
This attribute tells you the data type of a numpy array.
In [18]: arr1.dtype
Out[18]: dtype('int32')
In [19]: arr2.dtype
Out[19]: dtype('float64')